Topological Measurement of Protein Compressibility via Persistence Diagrams

نویسندگان

  • Marcio Gameiro
  • Yasuaki Hiraoka
  • Shunsuke Izumi
  • Miroslav Kramar
  • Konstantin Mischaikow
  • Vidit Nanda
چکیده

We exploit recent advances in computational topology to study the compressibility of various proteins found in the Protein Data Bank (PDB). Our fundamental tool is the persistence diagram, a topological invariant which captures the sizes and robustness of geometric features such as tunnels and cavities in protein molecules. Based on certain physical and chemical properties conjectured to impact protein compressibility, we propose a topological measurement CP for each protein molecule P . CP can be efficiently computed from the PDB data of P . Our main result establishes a clear linear correlation between CP and the experimentally measured compressibility of most proteins for which both PDB information and experimental compressibility data are available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persistence weighted Gaussian kernel for topological data analysis

Topological data analysis (TDA) is an emerging mathematical concept for characterizing shapes in complex data. In TDA, persistence diagrams are widely recognized as a useful descriptor of data, and can distinguish robust and noisy topological properties. This paper proposes a kernel method on persistence diagrams to develop a statistical framework in TDA. The proposed kernel satisfies the stabi...

متن کامل

Continuation of Point Clouds via Persistence Diagrams

In this paper, we present a mathematical and algorithmic framework for the continuation of point clouds by persistence diagrams. A key property used in the method is that the persistence map, which assigns a persistence diagram to a point cloud, is differentiable. This allows us to apply the Newton-Raphson continuation method in this setting. Given an original point cloud P , its persistence di...

متن کامل

On the Bootstrap for Persistence Diagrams and Landscapes

Persistent homology probes topological properties from point clouds and functions. By looking at multiple scales simultaneously, one can record the births and deaths of topological features as the scale varies. In this paper we use a statistical technique, the empirical bootstrap, to separate topological signal from topological noise. In particular, we derive confidence sets for persistence dia...

متن کامل

Optimal rates of convergence for persistence diagrams in Topological Data Analysis

Computational topology has recently known an important development toward data analysis, giving birth to the field of topological data analysis. Topological persistence, or persistent homology, appears as a fundamental tool in this field. In this paper, we study topological persistence in general metric spaces, with a statistical approach. We show that the use of persistent homology can be natu...

متن کامل

Means and medians of sets of persistence diagrams

The persistence diagram is the fundamental object in topological data analysis. It inherits the stochastic variability of the data we use as input. As such we need to understand how to perform statistics on the space of persistence diagrams. This paper looks at the space of persistence diagrams under a variety of different metrics which are analogous to L metrics on the space of functions. Usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012